Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Botnet, Detection Techniques, Traffic Monitoring via Machine Learning: Anonymous Traffic for Legitimate Users

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book contains:Introduction related to Bot/malware, Botnet (that hackers always try to create to do offensive actions like steel the personal information, Bit-coin losses etc.),Genesis of the problem, Problem statement, Objective,Contribution, and General layout of the project. Literature survey based on different detection techniques (like Honeypot, Machine learning, and other Intrusion detection techniques), comparative analysis (on Mining,Signature, DNS and Anomaly based approach). Proposed model, Flow chart and Algorithm for detection of traffic using classification and clustering machine learning algorithms. Result, Discussion, Conclusion and Feature scope based on partitioning of dataset and implementation of classification, clustering of Machine Learning, and hybrid approach (classification & clustering) to find out the accuracy. This book can help the students to enhance their knowledge and start working in the same field of research.

Informacija

Autorius: Shamsul Haq
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2020
Knygos puslapių skaičius: 52
ISBN-10: 6202519428
ISBN-13: 9786202519427
Formatas: 220 x 150 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Botnet, Detection Techniques, Traffic Monitoring via Machine Learning: Anonymous Traffic for Legitimate Users“

Būtina įvertinti prekę

Goodreads reviews for „Botnet, Detection Techniques, Traffic Monitoring via Machine Learning: Anonymous Traffic for Legitimate Users“