Biological Sequence Matching: Using Boolean Algebra and Fuzzy Logic: A Comparative Analysis

-15% su kodu: ENG15
72,18 
Įprasta kaina: 84,92 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
72,18 
Įprasta kaina: 84,92 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.9200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Biological sequence alignment is one of the crucial tasks of computational biology, and provides base for other tasks of bioinformatics. It has been consistent effort of researchers to employ different techniques for sequence alignment so as to get better results. This book is an adaptation of the master¿s dissertation, which was a research initiative carried in the field of biological sequence alignment. The work was about two distinct approaches to sequence matching ¿ Boolean algebra and Fuzzy logic ¿ a two-valued logic and a multi-valued logic. Both the methods determine the similarity between the sequences by direct comparison method using the operations of Boolean algebra and Fuzzy logic respectively. Then on the basis of their degree of similarity, multiple DNA sequences are aligned progressively using dynamic programming to ensure optimal alignment. The methods are implemented in MATLAB® and tested on various sets of DNA sequences of different ¿influenza A virus¿ types taken from NCBI bank. Three different aspects of the discussed approaches have been assessed using different data sets.

Informacija

Autorius: Nivit Gill, Shailendra Singh,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2012
Knygos puslapių skaičius: 128
ISBN-10: 3848481626
ISBN-13: 9783848481620
Formatas: 220 x 150 x 8 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Biological Sequence Matching: Using Boolean Algebra and Fuzzy Logic: A Comparative Analysis“

Būtina įvertinti prekę

Goodreads reviews for „Biological Sequence Matching: Using Boolean Algebra and Fuzzy Logic: A Comparative Analysis“