Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning

-15% su kodu: ENG15
64,01 
Įprasta kaina: 75,31 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
64,01 
Įprasta kaina: 75,31 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 75.3100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The brain has always had a fundamental advantage over conventional computers: it can learn. However, a new generation of artificial intelligence algorithms, in the form of deep neural networks, is rapidly eliminating that advantage. Deep neural networks rely on adaptive algorithms to master a wide variety of tasks, including cancer diagnosis, object recognition, speech recognition, robotic control, chess, poker, backgammon and Go, at super-human levels of performance. In this richly illustrated book, key neural network learning algorithms are explained informally first, followed by detailed mathematical analyses. Topics include both historically important neural networks (e.g. perceptrons), and modern deep neural networks (e.g. generative adversarial networks). Online computer programs, collated from open source repositories, give hands-on experience of neural networks, and PowerPoint slides provide support for teaching. Written in an informal style, with a comprehensive glossary, tutorial appendices (e.g. Bayes' theorem), and a list of further readings, this is an ideal introduction to the algorithmic engines of modern artificial intelligence.

Informacija

Autorius: James V Stone
Leidėjas: Sebtel Press
Išleidimo metai: 2019
Knygos puslapių skaičius: 218
ISBN-10: 0956372813
ISBN-13: 9780956372819
Formatas: 229 x 152 x 13 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning“

Būtina įvertinti prekę