Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Applying Particle Swarm Optimization: New Solutions and Cases for Optimized Portfolios

-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 254.0800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book explains the theoretical structure of particle swarm optimization (PSO) and focuses on the application of PSO to portfolio optimization problems. The general goal of portfolio optimization is to find a solution that provides the highest expected return at each level of portfolio risk. According to H. Markowitz¿s portfolio selection theory, as new assets are added to an investment portfolio, the total risk of the portfoliös decreases depending on the correlations of asset returns, while the expected return on the portfolio represents the weighted average of the expected returns for each asset. The book explains PSO in detail and demonstrates how to implement Markowitz¿s portfolio optimization approach using PSO. In addition, it expands on the Markowitz model and seeks to improve the solution-finding process with the aid of various algorithms. In short, the book provides researchers, teachers, engineers, managers and practitioners with many tools they need to apply the PSO technique to portfolio optimization.

Informacija

Serija: International Series in Operations Research & Management Science
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2021
Knygos puslapių skaičius: 364
ISBN-10: 3030702804
ISBN-13: 9783030702809
Formatas: 241 x 160 x 26 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Applying Particle Swarm Optimization: New Solutions and Cases for Optimized Portfolios“

Būtina įvertinti prekę

Goodreads reviews for „Applying Particle Swarm Optimization: New Solutions and Cases for Optimized Portfolios“