Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each. Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management.
Serija: | Springer Tracts in Nature-Inspired Computing |
Leidėjas: | Springer Nature Singapore |
Išleidimo metai: | 2020 |
Knygos puslapių skaičius: | 288 |
ISBN-10: | 981139265X |
ISBN-13: | 9789811392658 |
Formatas: | 235 x 155 x 16 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Applied Nature-Inspired Computing: Algorithms and Case Studies“