Applied Multiple Imputation: Advantages, Pitfalls, New Developments and Applications in R

-15% su kodu: ENG15
91,15 
Įprasta kaina: 107,23 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
91,15 
Įprasta kaina: 107,23 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 107.2300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master¿s and PhD students with a sound basic knowledge of statistics.

Informacija

Autorius: Kristian Kleinke, Martin Spiess, Daniel Salfrán, Jost Reinecke,
Serija: Statistics for Social and Behavioral Sciences
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2021
Knygos puslapių skaičius: 304
ISBN-10: 3030381668
ISBN-13: 9783030381660
Formatas: 235 x 155 x 17 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Applied Multiple Imputation: Advantages, Pitfalls, New Developments and Applications in R“

Būtina įvertinti prekę

Goodreads reviews for „Applied Multiple Imputation: Advantages, Pitfalls, New Developments and Applications in R“