Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Applications of q-Calculus in Operator Theory

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. ¿¿This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain¿ forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.

Informacija

Autorius: Ali Aral, Ravi P. Agarwal, Vijay Gupta,
Leidėjas: Springer New York
Išleidimo metai: 2013
Knygos puslapių skaičius: 276
ISBN-10: 1461469457
ISBN-13: 9781461469452
Formatas: 241 x 160 x 20 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Applications of q-Calculus in Operator Theory“

Būtina įvertinti prekę

Goodreads reviews for „Applications of q-Calculus in Operator Theory“