Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Anomaly Detection in Random Heterogeneous Media: Feynman-Kac Formulae, Stochastic Homogenization and Statistical Inversion

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem. 

Informacija

Autorius: Martin Simon
Leidėjas: Springer Fachmedien Wiesbaden
Išleidimo metai: 2015
Knygos puslapių skaičius: 164
ISBN-10: 3658109920
ISBN-13: 9783658109929
Formatas: 210 x 148 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Anomaly Detection in Random Heterogeneous Media: Feynman-Kac Formulae, Stochastic Homogenization and Statistical Inversion“

Būtina įvertinti prekę

Goodreads reviews for „Anomaly Detection in Random Heterogeneous Media: Feynman-Kac Formulae, Stochastic Homogenization and Statistical Inversion“