Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Anharmonic Properties of the Vibrational Two-Qubit System

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The present work focused on theoretical studies in the molecular quantum computing with vibrational qubits and how the molecular vibrational properties affect the fidelity of the logic gates. By using the Optimal Control Theory to shape a femtosecond laser and numerical propagation of laser-driven vibrational wave packets, the work analyzed how the vibrational properties of a two-qubit system affect the accuracy of the quantum gates and how to effectively control the vibrational state-to-state transitions. From these studies, the anharmonicities were found to be very important for the control of the vibrational state-to-state transitions and an intricate interplay between the frequencies and anharmonicities in the two-qubit system leads to the occurrence of resonances between different transitions in the vibrational manifold. From theoretical analysis of resonances, several criteria are formulated for selection of molecule for implementation of the vibrational two-qubit system. These criteria can help experimentalists to choose the best molecules to achieve accurate qubit transformations in the experiment.

Informacija

Autorius: Yingying Gu
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2015
Knygos puslapių skaičius: 80
ISBN-10: 3659361836
ISBN-13: 9783659361838
Formatas: 220 x 150 x 5 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Anharmonic Properties of the Vibrational Two-Qubit System“

Būtina įvertinti prekę

Goodreads reviews for „Anharmonic Properties of the Vibrational Two-Qubit System“