Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m"(n) is equal to 0(n-1/2) under the condition m"n-1?c
Autorius: | V. L. Girko |
Leidėjas: | De Gruyter |
Išleidimo metai: | 1998 |
Knygos puslapių skaičius: | 700 |
ISBN-10: | 3110354772 |
ISBN-13: | 9783110354775 |
Formatas: | 246 x 175 x 43 mm. Knyga kietu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „An Introduction to Statistical Analysis of Random Arrays“