AN ECG SIGNAL BASED FEATURE SELECTION FOR DYSRHYTHMIA CLASSIFICATION: USING PSO, GWO AND SVM

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Arrhythmia occurs when there is no proper working of electrical impulses present in the heart. An earlier detection of irregular heart rhythm is necessary in order to rescue ones survival. Classification of arrhythmia is needed for diagnosis. This report confers the Principle component analysis as feature reduction process to reduce high dimensional input without influencing classification methods and two feature selection techniques such as Grey wolf optimizer (GWO), Particle swarm optimization (PSO), and Support Vector Machine (SVM) helpful in choosing features with arrhythmia and resultswill be used for classification of various arrhythmia. Performance Analysis for these feature selection techniquesis estimated. The curse of dimensionality (i.e., dataset containing large volume of features) is solved using these feature selection methods. The result explores the performance metrics for integration of three methods such as PSO, GWO with SVO and shows that PSO and GWO integrated with SVM selected features with 96.08% accuracy.

Informacija

Autorius: Ganesh Babu C, Harikumar Rajaguru, Kalaiyarasi M,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2021
Knygos puslapių skaičius: 52
ISBN-10: 6204184784
ISBN-13: 9786204184784
Formatas: 220 x 150 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „AN ECG SIGNAL BASED FEATURE SELECTION FOR DYSRHYTHMIA CLASSIFICATION: USING PSO, GWO AND SVM“

Būtina įvertinti prekę

Goodreads reviews for „AN ECG SIGNAL BASED FEATURE SELECTION FOR DYSRHYTHMIA CLASSIFICATION: USING PSO, GWO AND SVM“