Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory

-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 237.1400 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references.

Informacija

Serija: Encyclopaedia of Mathematical Sciences
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2010
Knygos puslapių skaičius: 296
ISBN-10: 3642081193
ISBN-13: 9783642081194
Formatas: 234 x 156 x 17 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory“

Būtina įvertinti prekę