Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Adaptive Security Model for Healthcare data using Biomedical NLP

-15% su kodu: ENG15
74,50 
Įprasta kaina: 87,65 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
74,50 
Įprasta kaina: 87,65 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 87.6500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The security and privacy of patient data has emerged as a critical concern, given the relevance of the qualities of the patient's information in EMR. Unauthorized access and unethical data manipulation could result in a large-scale medical and economic calamity. Many researchers have studied the security of big data over the last decade and developed many security models to protect data from malicious assaults and leakages.The researchers' security and privacy measures, on the other hand, are rigid and homogeneous in nature. However, because of the randomness and dynamism of big data, an adaptive and dynamic security architecture is required to deal with the uncertainty of data properties. Adaptive security is a solution to this challenge that provides a security strategy based on continuously examining behaviour and events and effectively adjusting to dangers before they materialize. The use of machine learning methods to propose an adaptable and dynamic security model in the health-care industry adds a lot of value to the existing security system.

Informacija

Autorius: Somya Dubey, Manish Sharma,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2023
Knygos puslapių skaičius: 92
ISBN-10: 6205516128
ISBN-13: 9786205516126
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Adaptive Security Model for Healthcare data using Biomedical NLP“

Būtina įvertinti prekę

Goodreads reviews for „Adaptive Security Model for Healthcare data using Biomedical NLP“