Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

A Sum-Of-Product Based Multiplication Approach For FIR Filters And DFT

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Discrete Fourier Transform (DFT) and Finite Impulse Response (FIR) filters are extensively used in Digital Signal Processing (DSP) and Image Processing. In this book, an arithmetic Sum-of-Product (SOP) based approach to implement area- and delay-efficient DFT and FIR filter circuits is presented. The proposed SOP based engine uses an improved column compression algorithm, and handles the sign of the input efficiently. The partial products of the computation are compressed down to two operands, which are then added using a single hybrid adder. The problem of synthesizing DFT and FIR filters circuits can also be cast as an instance of the Multiple Constant Multiplication (MCM) problem. RAG-n is one of the best known algorithms for realizing an MCM block with the minimum number of adders. For DFT coefficients, the proposed approach yields faster circuits (by about 12-13%) with low area penalty (about 5%), as compared to RAG-n. Significant speed-ups are also observed for a set of FIR filters with hard-to-implement coefficients.

Informacija

Autorius: Rajeev Kumar, Sunil P. Khatri,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2014
Knygos puslapių skaičius: 64
ISBN-10: 3848486369
ISBN-13: 9783848486366
Formatas: 220 x 150 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „A Sum-Of-Product Based Multiplication Approach For FIR Filters And DFT“

Būtina įvertinti prekę

Goodreads reviews for „A Sum-Of-Product Based Multiplication Approach For FIR Filters And DFT“