Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

0 Mėgstami
0Krepšelis

A Randomized Approximate Nearest Neighbors Algorithm: Theory and Applications

-20% su kodu: BOOKS
67,94 
Įprasta kaina: 84,92 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
67,94 
Įprasta kaina: 84,92 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-16
-20% su kodu: BOOKS
2025-03-31 67.94 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The classical nearest neighbors problem is formulated as follows: given a collection of N points in the Euclidean space R^d, for each point, find its k nearest neighbors (i.e. closest points). Obviously, for each point X, one can compute the distances from X to every other point, and then find k shortest distances in the resulting array. However, the computational cost of this naive approach is at least (d*N^2)/2 operations, which is prohibitively expensive in many applications. For example, "naively" solving the nearest neighbors problem with d=100, N=1,000,000 and k=30 on a modern laptop can take about as long as a day of CPU time. Fortunately, in such areas as data mining, image processing, machine learning etc., it often suffices to find "approximate" nearest neighbors instead of the "true" ones. In this work, a randomized approximate algorithm for the solution of the nearest neighbors problem is described. It has a considerably lower computational cost than the naive algorithm, and is fairly fast in practical applications. We provide a probabilistic analysis of this algorithm, and demonstrate its performance via several numerical experiments.

Informacija

Autorius: Andrei Osipov
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2012
Knygos puslapių skaičius: 136
ISBN-10: 3659128384
ISBN-13: 9783659128387
Formatas: 220 x 150 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „A Randomized Approximate Nearest Neighbors Algorithm: Theory and Applications“

Būtina įvertinti prekę

Goodreads reviews for „A Randomized Approximate Nearest Neighbors Algorithm: Theory and Applications“