Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

A Geometric Approach to Differential Forms

-15% su kodu: ENG15
77,12 
Įprasta kaina: 90,73 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
77,12 
Įprasta kaina: 90,73 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 90.7300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

The modern subject of differential forms subsumes classical vector calculus. This text presents differential forms from a geometric perspective accessible at the advanced undergraduate level.  The author approaches the subject with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp; algebraic properties then follow. This facilitates the development of differential forms without assuming a background in linear algebra. Throughout the text, emphasis is placed on applications in 3 dimensions, but all definitions are given so as to be easily generalized to higher dimensions. The second edition includes a completely new chapter on differential geometry, as well as other new sections, new exercises and new examples. Additional solutions to selected exercises have also been included. The work is suitable for use as the primary textbook for a sophomore-level class in vector calculus, as well as for more upper-level courses in differential topology and differential geometry. 

Informacija

Autorius: David Bachman
Leidėjas: Birkhäuser Boston
Išleidimo metai: 2011
Knygos puslapių skaičius: 172
ISBN-10: 0817683038
ISBN-13: 9780817683030
Formatas: 241 x 160 x 14 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „A Geometric Approach to Differential Forms“

Būtina įvertinti prekę

Goodreads reviews for „A Geometric Approach to Differential Forms“